Lecture 5. The solving of the quantum-mechanical problem for hydrogen atom

eigenstates - COOCTBEHHBIC 3HAUCHHS

eigenfunctions - coocTBeHHbIE QYHKINH

principal guantum number - rIaBHOE KBAHTOBOE YHCIIO

azimuthal quantum number - op6uTaNbHOE KBAHTOBOE YHCIIO
magnetic quantum number - MarHUTHOE KBAHTOBOE YHCIIO
guantization - kBanToBaHHUE

space quantization - mpocTpaHCTBEHHOE KBAHTOBAHHE

angular momentum quantization - kBanToBaHHE OPOUTATILHOTO MOMEHTA
degeneracy - BeIposKA€HHE (KPATHOCTD BHIPOIKICHHMS)

degenerate energy levels - BeipoxIcHHBIC SHEPTreTHUECKHE YPOBHU
€gs units — cucrema CI'C

Sl units — cucrema CU

Goal. To solve the quantum-mechanical problem for hydrogen atom

The Schrodinger equation for hydrogen atom
Let’s consider now the solution of the Schrodinger equation for the hydrogen atom. Since the potential
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function of an electron in a hydrogen atom in cgs units has the form I' , where ¢ is a charge of
electron (and proton), Schrodinger equation is written as:
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Here y is an electron wave function in the reference frame of the proton, m is mass of electron,

h , 08 0 o . .
h=_—, E - full energy of electron, V* =—+—+— - Laplace operator. Since the potential
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function depends on r, and not on the coordinates separately, it will be convenient to write down the
Laplacian in spherical coordinates (r,8,¢). In it, it looks like this:
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Fig.5.1. Spherical coordinates

Schrodinger equation in spherical coordinates:
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In this equation ¥ is function of three variables (r,¢9, go). Divide it into three simpler equations. To do
this, we represent the function (r,@, go) as the product of three functions:
w(r,0,0)=R(r)-6(0) - ®(p). These functions will be denoted simply R,®,® . Then
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After substituting the values of the partial derivatives in the Schrodinger equation we obtain:
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Multiplying equation by ———:
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The second term depends only on ¢ . We transfer it into the right-hand side.
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Equality is possible when both sides are equal to some constant value. We denote it m Consequently,
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The solutions of this equation are the functions
® = Asin(m¢) @ = Acos(m,¢p)

The angle ¢ may vary from 0 to 2x. Function @ must be periodic with period 2x. This is possible only if

m =0,+1+2,+3,.. Thus, from the solutions of the Schrédinger equation, we obtain the value of one
of the quantum numbers (of course, you can get out of it all of them). The number m, is called the
magnetic quantum number.

Further, integrating the square of the modulus of the function ® from 0 to 2z, and equating the
resulting expression 1, we get that
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Next, we consider the left-hand side of the equation. It, of course, is m, :
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Divide the equation by sin* @ :
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After a similar transference of the second term in the right-hand side and indicating of the value, to which
the parts is equal, through B3, we obtain
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Solving of these last two equations yields values | and n, respectively. 3 quantum numbers together fully
describe the state of the electron in the hydrogen atom. Module of the total energy of an electron in a
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stationary state in the hydrogen atom is inversely proportional to N . The number n s called the
principal quantum number. It can have values from 1 to .

Module of the total energy of an electron in a stationary state in the hydrogen-like atom in Sl units is
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The number | is called the azimuthal quantum number, it determines the angular momentum of the
electron and the shape of the electron cloud; can have values from 0to n—1 (N here refers to the energy

level at which the electron is considered). The magnetic quantum number m, determines the projection of

the angular momentum on the selected axis in a magnetic field. This projection is 7

The charge-cloud model, which is also called the quantum-mechanical model, does not attempt to
describe the path of each electron in a fixed orbit. Scientists now describe the possible positions of
electrons in terms of probability. Computers can calculate the eigenfunctions of electron and give the
points in space that an electron has the highest probability of occupying. These points can be connected to
form a three-dimensional shape. Electrons are characterized in terms of the three-dimensional shapes that
their probability define. The sum total of the various paths of electrons, traveling at very high speeds, is
described as the electron cloud.

Visualizing the hydrogen electron orbitals

The image to the right shows the first few hydrogen atom orbitals (energy
eigenfunctions). These are cross-sections of the probability density that are
color-coded (black=zero density, white=highest density). The angular momentum
(orbital) quantum number ! is denoted in each column, using the usual
spectroscopic letter code ("s" means /= 0; "p": /= 1. "d": = 2). The main
(principal) quantum number n (=1, 2, 3, ...} is marked to the right of each row.
For all pictures the magnetic quantum number m has been set to 0, and the
cross-sectional plane is the xz-plane (z is the vertical axis). The probability
density in three-dimensional space is obtained by rotating the one shown here
around the z-axis.

The "ground state”, i.e. the state of lowest energy, in which the electron is
usually found, is the first one, the "1s" state (principal quantum level n =1, 1=
0}).

An image with more orbitals is also available (up to higher numbers rm and 1).

Black lines occur in each but the first orbital: these are the nodes of the
wavefunction, i.e. where the probability density is zero. (More precisely, the
nodes are Spherical harmonics that appear as a result of sohing Schrodinger's
equation in polar coordinates.)

The quantum numbers determine the layout of these nodes.! There are:



Probability densities through the xz-plane for the electron at
different guantum numbers (I, acrogs top; n, down gide; m=0}

Quantum numbers and degeneracy of the energy levels

The quantum numbers can take the following values

n=123.... principal quantum number
f=n-1n-2,..,10 azimuthal quantum number
m=-f .. .. { magnetic quanturm number

B=L=,l{I+1)n
L =mh
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Example 5.1



levels | Eigenfunction n i m, State | Degeneracy
1 0 0 1
E, P00 Is
2 0 0
Ez Voo 28 4
Voo Vou, 1 0,1 2p
Yo
3 0 0
E, P gsp
Vi, Yo, 1 0,£1 9
0
Vi 5 +1
Voo, Yo, )
T
II132—11 3d
Vi, Voo
Problems.

1.Rewrite the equation that determines the radial part of the wave function of an electron in the
Coulomb field of the nucleus Z in the dimensionless form. An atomic unit of the length (the first
Bohr radius) and atomic energy unit (electron coupling energy in the hydrogen atom) can be
taken as measure units.

2. What solutions of the time-dependent Schrodinger equation are called as stationary? Show
that such solutions are obtained when U does not explicitly depend on time.

3. How the total wave function W (x,t) describing the stationary states will change, if you change
the origin of the potential energy by a certain amount AU ?

4. Find a solution of the time-dependent Schrodinger equation for a free particle, moving with
momentum p in the positive direction of the axis x .

5. A particle with a mass mis located in the two-dimensional square potential well with
absolutely impenetrable walls(0<x<1). Find: a) The energy eigenvalues and normalized

eigenfunctions of the particle; b) the probability of finding the particle with the lowest energy in
the region 1/3< x <2l /3; c) the number of the energy levels in the range (E, E + dE)..
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