
Lecture 5. The solving of the quantum-mechanical problem for hydrogen atom 

 

eigenstates - coбственные значения 

eigenfunctions - собственные функции 

principal quantum number - главное квантовое число  

azimuthal  quantum number - орбитальное квантовое число  

magnetic quantum number - магнитное квантовое число 

quantization - квантование 

space quantization - пространственное квантование 

angular momentum quantization - квантование орбитального момента 

degeneracy - вырождение (кратность вырождения) 

degenerate energy levels - вырожденные энергетические уровни 

cgs units – система СГС  

SI units – система СИ 

 

Goal. To solve  the quantum-mechanical problem for hydrogen atom 

 

The Schrodinger equation for hydrogen atom 

Let’s consider now the solution of the Schrödinger equation for the hydrogen atom. Since the potential 

function of an electron in a hydrogen atom in cgs units has the form 
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electron (and proton), Schrodinger equation is written as: 
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Here   is an electron wave function in the reference frame of the proton, m  is mass of electron, 
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= , E  - full energy of electron, 
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 - Laplace operator. Since the potential 

function depends on r, and not on the coordinates separately, it will be convenient to write down the 

Laplacian in spherical coordinates ( ), ,r   . In it, it looks like this: 
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Fig.5.1. Spherical coordinates 

 

Schrodinger equation in spherical coordinates: 
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In this equation   is function of three variables ( ), ,r   . Divide it into three simpler equations. To do 

this, we represent the function   ( ), ,r   as the product of three functions: 

( ), , ( ) ( ) ( )r R r    =   . These functions will be denoted simply , ,R  . Then 
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After substituting the values of the partial derivatives in the Schrödinger equation we obtain: 
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Multiplying equation by 
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The second term depends only on  . We transfer it into the right-hand side. 
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Equality is possible when both sides are equal to some constant value. We denote it 
2

lm
. Consequently, 
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The solutions of this equation are the functions 

( )sin lA m =
, 

( )cos lA m =
 

The angle 


 may vary from 0 to 2π. Function   must be periodic with period 2π. This is possible only if 

0, 1, 2, 3,...lm =   
 Thus, from the solutions of the Schrödinger equation, we obtain the value of one 

of the quantum numbers (of course, you can get out of it all of them). The number ml is called the 

magnetic quantum number. 

 Further, integrating the square of the modulus of the function Φ from 0 to 2π, and equating the 

resulting expression 1, we get that  
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Next, we consider the left-hand side of the equation. It, of course, is 
2

lm
: 
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Divide the equation by 
2sin  : 
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After a similar transference of the second term in the right-hand side and indicating of the value, to which 

the parts is equal, through β, we obtain 
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Solving of these last two equations yields values l and n , respectively. 3 quantum numbers together fully 

describe the state of the electron in the hydrogen atom. Module of the total energy of an electron in a 

stationary state in the hydrogen atom is inversely proportional to 
2n . The number n   is called the 

principal quantum number. It can have values from 1 to  . 
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Module of the total energy of an electron in a stationary state in the hydrogen-like atom in SI units is 
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The number l is called the azimuthal quantum number, it determines the angular momentum of the 

electron and the shape of the electron cloud; can have values from 0 to 1n −  ( n  here refers to the energy 

level at which the electron is considered). The magnetic quantum number lm
 determines the projection of 

the angular momentum on the selected axis in a magnetic field. This projection is lm
. 

The charge-cloud model, which is also called the quantum-mechanical model, does not attempt to 

describe the path of each electron in a fixed orbit. Scientists now describe the possible positions of 

electrons in terms of probability. Computers can calculate the eigenfunctions of electron and give the 

points in space that an electron has the highest probability of occupying. These points can be connected to 

form a three-dimensional shape. Electrons are characterized in terms of the three-dimensional shapes that 

their probability define. The sum total of the various paths of electrons, traveling at very high speeds, is 

described as the electron cloud. 

 

 



 

 

 

 
 

 

 

 

 

Example 5.1 
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Problems. 

1.Rewrite the equation that determines the radial part of the wave function of an electron in the 

Coulomb field of the nucleus Z in the dimensionless form. An atomic unit of the length (the first 

Bohr radius) and atomic energy unit (electron coupling energy in the hydrogen atom) can be 

taken as measure units.  

2. What solutions of the time-dependent Schrödinger equation are called as stationary? Show 

that such solutions are obtained when U does not explicitly depend on time. 

3. How the total wave function ( ),x t describing the stationary states will change, if you change 

the origin of the potential energy by a certain amount U ? 

4. Find a solution of the time-dependent Schrödinger equation for a free particle, moving with 

momentum p in the positive direction of the axis x . 

5. A particle with a mass m is located in the two-dimensional square potential well with 

absolutely impenetrable walls ( )0 x l  . Find: a) The energy eigenvalues and normalized 

eigenfunctions of the particle; b) the probability of finding the particle with the lowest energy in 

the region / 3 2 / 3l x l  ; c) the number of the energy levels in the range ( ),E E dE+ . 
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